Impairment of NO-Dependent Relaxation in Intralobar Pulmonary Arteries: Comparison of Urban Particulate Matter and Manufactured Nanoparticles
نویسندگان
چکیده
BACKGROUND AND OBJECTIVES Because pulmonary circulation is the primary vascular target of inhaled particulate matter (PM), and nitric oxide is a major vasculoprotective agent, in this study we investigated the effect of various particles on the NO-cyclic guanosine monophosphate (cGMP) pathway in pulmonary arteries. METHODS We used intrapulmonary arteries and/or endothelial cells, either exposed in vitro to particles or removed from PM-instilled animals for assessment of vasomotricity, cGMP and reactive oxygen species (ROS) levels, and cytokine/chemokine release. RESULTS Endothelial NO-dependent relaxation and cGMP accumulation induced by acetylcholine (ACh) were both decreased after 24 hr exposure of rat intrapulmonary arteries to standard reference material 1648 (SRM1648; urban PM). Relaxation due to NO donors was also decreased by SRM1648, whereas responsiveness to cGMP analogue remained unaffected. Unlike SRM1648, ultrafine carbon black and ultrafine and fine titanium dioxide (TiO2) manufactured particles did not impair NO-mediated relaxation. SRM1648-induced decrease in relaxation response to ACh was prevented by dexamethasone (an anti-inflammatory agent) but not by antioxidants. Accordingly, SRM1648 increased the release of proinflammatory mediators (tumor necrosis factor-alpha, interleukin-8) from intrapulmonary arteries or pulmonary artery endothelial cells, but did not elevate ROS levels within intrapulmonary arteries. Decreased relaxation in response to ACh was also evidenced in intrapulmonary arteries removed from rats intratracheally instilled with SRM1648, but not with fine TiO2. CONCLUSION In contrast to manufactured particles (including nanoparticles), urban PM impairs NO but not cGMP responsiveness in intrapulmonary arteries. We attribute this effect to oxidative-stress-independent inflammatory response, resulting in decreased guanylyl cyclase activation by NO. Such impairment of the NO pathway may contribute to urban-PM-induced cardiovascular dysfunction.
منابع مشابه
Artificial neural network forecast application for fine particulate matter concentration using meteorological data
Most parts of the urban areas are faced with the problem of floating fine particulate matter. Therefore, it is crucial to estimate the amounts of fine particulate matter concentrations through the urban atmosphere. In this research, an artificial neural network technique was utilized to model the PM2.5 dispersion in Tehran City. Factors which are influencing the predicted value consi...
متن کاملChemical Characterization of Particulate Matter at Traffic Prone Roadside Environment in Agra, India
In the present study, size-segregated samples of PM were collected from urban and semi-urban traffic junctions in Agra, India. PM samples were collected during the monsoon season (July to September 2015) using Grimm portable aerosol Spectrometer. The recorded mean concentration of PM10 at urban site was 137.09±61μg/m3 and at semi-urban site was 270.14±21μg/m3, which were higher than the suggest...
متن کاملChemical Characterization of Particulate Matter at Traffic Prone Roadside Environment in Agra, India
In the present study, size-segregated samples of PM were collected from urban and semi-urban traffic junctions in Agra, India. PM samples were collected during the monsoon season (July to September 2015) using Grimm portable aerosol Spectrometer. The recorded mean concentration of PM10 at urban site was 137.09±61μg/m3 and at semi-urban site was 270.14±21μg/m3, which were higher than the suggest...
متن کاملLevels of PM10 and its Chemical Composition in the Atmosphere of the City of Isfahan
Airborne particulate matter (PM10 ) was collected from the atmosphere of the city of Isfahan. The concentration of heavy metals and anions associated with airborne particulate matter were determined using atomic absorption spectrometric and ion chromatographic techniques. A comparison was made between the variation in the concentration of PM10 and that for heavy metals and...
متن کاملRespiratory effects of manufactured nanoparticles.
Nanotechnology is the set of techniques used to engineer, characterize, and produce materials that have at least one dimension within the nanoscale. These nanomaterials, or nanoobjects, include nanoparticles and nanotubes. As dictated by the laws of quantum physics, a size within the nanoscale results in unique physicochemical properties and distinctive behaviors. Nanotechnology has a host of a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 116 شماره
صفحات -
تاریخ انتشار 2008